metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Charalambos Litos,^a Alexandra Karaliota^a* and Simon Parsons^b

^aDepartment of Inorganic Chemistry, University of Athens, Athens 15771, Greece, and ^bUniversity of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Correspondence e-mail: akaraliota@chem.uoa.gr

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.100 Data-to-parameter ratio = 22.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(tetraphenylphosphonium) bis(1-carboxybenzene-2,3-diolato- $\kappa^2 O, O'$)-cis-dioxomolybdate(VI)

The title compound, $(C_{24}H_{20}P)_2[Mo(C_7H_4O_4)_2O_2]$, contains a distorted octahedral molybdenum(VI) complex having the characteristic *cis*-MoO₂²⁺ group and the ligand 2,3-dihydroxybenzoic acid coordinated through the two phenolate O atoms, while the carboxyl group is not deprotonated. No π - π overlap between the benzene rings of the ligands or those of the tetraphenylphosphonium ions is observed.

Comment

The title compound, (I), results from the reaction of a mixture of tetraphenylphosphonium bromide (PPh₄Br), 2,3dihydroxybenzoic acid (2,3-DHBA) and Na₂MoO₄·2H₂O in an aqueous solution (pH 6) with subsequent redissolution of the precipitate in dichloromethane. This method of preparation differs from that reported for the same metal–organic anion in (NMe₄)₂MoO₂(C₇H₄O₄)₂·1.5H₂O, (II) (Griffith *et al.*, 1995), and is less complicated. At lower pH values, the formation of oligomeric molybdenum complexes is preferred due to the presence of the ligand in its semi-oxidized form (semiquinone), which promotes oligomerization (Lymberopoulou-Karaliota *et al.*, 2005; Karaliota *et al.*, 2002).

In the complex anion of (I), the Mo^{VI} atom has a distorted octahedral geometry (Fig. 1). The Mo=O bond lengths and O1=Mo=O2 bond angle (Table 1) have values typical for *cis*-MoO₂²⁺ groups. The two types of phenolic C–O bond lengths [mean values 1.332 (2) and 1.352 (2) Å] of the 2,3-DHBA ligands compare well with those observed for the catecholate (fully reduced) form of the ligand (Buchanan & Pierpont, 1980). The difference in the distances is attributed to the intramolecular O–H···O hydrogen bond (Table 2).

In the packing diagram (Fig. 2), it is important to notice that the large tetraphenylphosphonium ions bring only two molybdenum complex ions into relative proximity. Moreover, no π - π interactions are observed, even though there are a number of benzene rings in both the ligands and the tetra-

© 2006 International Union of Crystallography All rights reserved Received 16 January 2006 Accepted 25 March 2006

Figure 1

The structure of the complex anion in (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

phenylphosphonium ions. This absence of π - π interactions between the ligands may explain the different colour of the crystal of (I) compared with (II), where there is $\pi - \pi$ interaction between the two molybdenum complex anions.

The cyclic voltammograph of (I) in dichloromethane confirmed its catecholate form, showing only a two-electron redox peak corresponding to the catechol-to-quinone oxidation of the ligand. The cis-MoO₂²⁺ group can also contain a pentavalent molybdenum ion (Lu et al., 2001), but in the voltammograph no peak due to the Mo^V-to-Mo^{VI} conversion was observed.

Experimental

All reagents were purchased from Aldrich. An aqueous solution (10.0 ml) of 2,3-DHBA (77.1 mg, 0.5 mmol) and Na₂MoO₄·2H₂O (121.0 mg, 0.5 mmol) was added to an aqueous solution (12.5 ml) of PPh₄Br (210.0 mg, 0.5 mmol), producing a yellow precipitate. The precipitate (29.1 mg, 0.03 mmol) was dissolved in dichloromethane (15 ml) and, after slow evaporation, crystals of (I) were obtained. Analysis calculated for C₆₂H₄₈O₁₀P₂Mo: C 66.90, H 4.35%; found C 66.82, H 4.27%.

Crystal data

$\begin{array}{l} (C_{24}H_{20}P)_2[Mo(C_7H_4O_4)_2O_2]\\ M_r = 1110.88\\ Orthorhombic, Pbca\\ a = 13.3595 (3) Å\\ b = 16.9998 (4) Å\\ c = 45.5887 (13) Å\\ V = 10353.6 (4) Å^3\\ Z = 8\\ D_x = 1.425 \ {\rm Mg \ m^{-3}} \end{array}$	Mo $K\alpha$ radiation Cell parameters from 8839 reflections $\theta = 2-28.5^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 150 (2) K Block, yellow $0.60 \times 0.54 \times 0.35 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area- detector diffractometer	15149 independent reflections 11301 reflections with $I > 2\sigma(I)$ $R_{\rm r} = 0.058$
w seams	$\Lambda_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.1^{\circ}$
(SADABS; Sheldrick, 2004)	$h = -18 \rightarrow 18$

 $k = -23 \rightarrow 23$

 $l = -64 \rightarrow 63$

Figure 2

The packing of (I), with symmetry-equivalent molecules coloured the same. H atoms have been omitted.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0315P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 9.6314 <i>P</i>]
$wR(F^2) = 0.100$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.002$
15149 reflections	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
678 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Mo1-O1	1.7056 (15)	O12-C22	1.331 (2)
Mo1-O2	1.7151 (15)	C71-O81	1.349 (2)
Mo1-O81	1.9765 (14)	C72-O82	1.355 (2)
Mo1-O82	1.9865 (14)	C91-O911	1.217 (3)
Mo1-O12	2.2198 (14)	C91-O912	1.340 (3)
Mo1-O11	2.2255 (14)	C92-O921	1.218 (3)
O11-C21	1.332 (2)	C92-O922	1.344 (3)
O1-Mo1-O2	103.36 (7)	O1-Mo1-O11	88.97 (6)
O1-Mo1-O81	105.89 (7)	O2-Mo1-O11	164.19 (7)
O2-Mo1-O81	91.32 (7)	O81-Mo1-O11	75.61 (5)
O1-Mo1-O82	92.12 (7)	O82-Mo1-O11	85.53 (5)
O2-Mo1-O82	103.59 (7)	O12-Mo1-O11	77.43 (5)
O81-Mo1-O82	153.40 (6)	C21-O11-Mo1	111.89 (12)
O1-Mo1-O12	161.83 (7)	C22-O12-Mo1	113.07 (12)
O2-Mo1-O12	92.29 (6)	C71-O81-Mo1	120.06 (12)
O81-Mo1-O12	82.58 (6)	C72-O82-Mo1	120.75 (12)
O82-Mo1-O12	75.03 (5)		. ,

Table 2		
Hydrogen-bond geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.84	1.73	2.514 (2)	155
0.84	1.74	2.523 (2)	155
0.95	2.54	3.357 (3)	144
0.95	2.29	3.178 (3)	154
0.95	2.48	3.195 (3)	132
0.95	2.55	3.249 (3)	131
0.95	2.46	3.348 (3)	156
0.95	2.58	3.370 (3)	141
0.95	2.55	3.447 (3)	158
0.95	2.53	3.310 (3)	140
	<i>D</i> -H 0.84 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.84 & 1.73 \\ 0.84 & 1.74 \\ 0.95 & 2.54 \\ 0.95 & 2.29 \\ 0.95 & 2.48 \\ 0.95 & 2.55 \\ 0.95 & 2.46 \\ 0.95 & 2.58 \\ 0.95 & 2.58 \\ 0.95 & 2.55 \\ 0.95 & 2.53 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x+1, -y+\frac{1}{2}, z+\frac{1}{2}$

The hydroxyl H atoms were located in difference maps and the OH groups were subsequently refined as rotating rigid groups, with O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions, with C–H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

 $T_{\min} = 0.732, T_{\max} = 0.880$

122211 measured reflections

metal-organic papers

Data collection: *SMART* (Siemens, 1993); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *DIRDIF* (Beurskens *et al.*, 1996); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1997); software used to prepare material for publication: *XCIF* (Sheldrick, 1993) and *PLATON* (Spek, 2003).

This work was supported by the Special Research Account of Athens University and in particular by the Herakleitos programme (EPEAEK II).

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). *The DIRDIF96*

Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

- Buchanan, R. M. & Pierpont, C. G. (1980). J. Am. Chem. Soc. 102, 4951-4957.
- Griffith, W. P., Nogueira, H. I. S., Parkin, B. C., Sheppard, R. N., White, A. J. P. & Williams, D. J. J. (1995). J. Chem. Soc. Dalton Trans. pp. 1775–1781.
- Karaliota, A., Aletras, V., Hadjipanayioti, D., Kamariotaki, M. & Potamianou, M. (2002). J. Mass Spectrom. 37, 760–763.
- Lu, X., Liu, S., Mao, X. & Bu, X. (2001). J. Mol. Struct. 562, 89-94.
- Lymberopoulou-Karaliota, A., Hatzipanayioti, D., Kamariotaki, M., Potamianou, M., Litos, C. & Aletras, V. (2005). *Inorg. Chim. Acta*, 358, 2975– 2995.
- Sheldrick, G. M. (1993). XCIF. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and XP. University of Göttingen, Germany.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Siemens (1993). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.